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Time-Domain Finite Difference Approach to
the Calculation of the Frequency-Dependent
Characteristics of Microstrip Discontinuities

XIAOLEI ZHANG anp KENNETH K. MEI, FELLOW, IEEE

Abstract —The frequency-dependent characteristics of the microstrip
discontinuities have previously been analyzed using several full-wave ap-
proaches. The time-domain finite different (TD-FD) method presented in
this paper is another independent approach and is relatively new in its
application for obtaining the frequency-domain results for microwave
components [26]. The purpose of this paper is to establish the validity of
the TD-FD method in modeling circuit components for MMIC CAD
applications.

I. INTRODUCTION

ICROSTRIP discontinuities (Fig. 1) are the basic

constituent elements of microstrip integrated cir-
cuits. The accurate modeling of these discontinuities using
different numerical approaches is one of the most impor-
tant topics in microwave CAD. The current cut-and-iry
cycles in the design of microstrip integrated circuits will be
greatly reduced if the frequency-dependent characteristics
of the discontinuities can be obtained with certainty. Us-
ing network concepts, various microstrip resonators, cou-
plers, and filters can be directly analyzed from the inter-
connection of microstrip discontinuities and microstrip
line segments.

The study of microstrip discontinuities started in the
early 1960’s. For nearly a decade, the analyses were mostly
quasi-static in nature [1]-[12]. The first accurate full-wave
frequency-dependent analysis appeared around 1975
[13]-[15]. This approach began with the use of a waveguide
model with electric-wall top and bottom planes and mag-
netic-wall sides planes to characterize the microstrip. The
effective dielectric constant of the filling and the width of
the guide are assumed to be frequency dependent and are
determined in such a way that the model and the actual
microstrip line have the same frequency-dependent propa-
gation constant and characteristic impedance. Using the
waveguide model to represent the original microstrip, the
fields at the region of the discontinuities are expanded into
waveguide modes, and the modes of different regions are
matched at intersection planes. From the matching coeffi-
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cients the S matrix for different propagation modes can
thus be calculated. The waveguide model approach is
efficient and has reasonable accuracy for calculating the
magnitude of the S parameters in the lower frequency
range, but it is not able to take into account the radiation
effect (since the model is a closed one) and the surface
wave generation. Besides, the mode-matching step will also
introduce error due to the fact that the actual modes
excited in the microstrip discontinuities are not the same
as those used in the model and accordingly will not match
in exactly the same way. There is also an obvious limita-
tion on the kinds of structures this method can be applied
to. It cannot, for example, be used to analyze the mi-
crostrip open-end structure where one side of the disconti-
nuity is not connected to a microstrip and where the
radiation and surface waves are present.

A full-wave approach to the microstrip open end prob-
lem was first proposed by James and Henderson in 1979
[16]. The analysis on the far end of the microstrip open
end, where the surface wave and the radiation wave aré the
constitutents of the fields, is carried out using an analytic
mode-expansion technique. On the microstrip side, a TEM
wave is taken as the dominant mode incident field, and the
semiempirical results for the propagation constant and the
characteristic impedance are used for this incident wave.
The fields at both sides are matched at the interface and a
variational step is taken to reduce the error introduced by
the assumption of the TEM field pattern where the electric
field has a vertical coastant value under the strip and is
zero elsewhere in the {ransverse plane. Mainly due to the
roughness of the field pattern assumed, the results of this
method are not very accurate, but the analysis did provide
valuable physical insight.

Another important method which has been used by
several investigators to model the microstrip discontinu-
ities is the spectral-domain approach [17]-[19]. In using
this method to analyze the shielded or covered structures,
the fields and currents involved are Fourier transformed
(with respect to the space variables) into the so-called
spectral domain. The shape of the current on the mi-
crostrip is assumed to be close to the actual current
distribution and is easily Fourier-transformable. The spec-
tral-domain components of the fields and currents are
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related according to the field continuity and boundary
conditions and thus set up a system of equations for the
variables. The inverse-transformed field solutions are used
to calculate the S parameters.

Although a relatively accurate method for the type of
components it is capable of calculating, the spectral-
domain approach depends strongly on the current distribu-
tions assumed, which in many cases are hard to specify
with high accuracy; thus it is limited in its applications.
Besides, the frequency range which can be dealt with by
this method is limited due to the difficulties which arise
near the cutoff frequency of the higher order mode of the
microstrip.

In recent years, the moment method has also been used
by several investigators [20], [21] on the discontinuity
problems. This method could in principle be an accurate
one with wide applications, but due to the complexity of
the Green’s functions for the microstrip configurations it is
not economical to make very fine numerical divisions to
the microstrip for accurate results. In fact in many cases
only a rational function form is used to represent the
transverse current distribution on the microstrip, which
may not correspond to the actual current distribution up
to a certain frequency.

All the above-mentioned investigations are done in fre-
quency domain; that is, the data for the whole frequency
range are calculated one frequency at a time. It is an
expensive task when the results of a wide frequency range
are sought. This led us to seek an alternative way of
calculating the frequency-domain data. Since a pulse re-
sponse contains all the information of a system for the
whole frequency range, it is a natural approach to use a
pulse in the time domain to excite the microstrip struc-
tures, and from the time-domain pulse response to extract

(e}

Microstrip discontinuities. (a) Open-end. (b) Gap. (¢) Step-in-width. (d) T junction. (¢) Cross-junction. (f) Bend.

the frequency-domain characteristics of the system via the
Fourier transform [26].

One numerical scheme which can be used to calculate
the time-domain fields is the time-domain finite difference
(TD-FD) method. It was first proposed by K. S. Yee in
1966 [22] and has been used by many investigators to solve
electromagnetic scattering problems. Other numerical
methods which can be used to solve this type of initial
boundary value problem include the TLM method and
Bergeron’s method. Among these methods the TD-FD
method is the most direct from a mathematical point of
view, and is especially suitable for the accurate calculation
of the microstrip fields, the reasons for which will be
explained below.

Early investigators used the time-domain methods as a
tool to obtain qualitative results that graphically illustrate
the field propagation rather than to obtain design data
via the Fourier transform of time domain results [24], [25].
In the process of our investigation, it has been found [26]
that the Fourier transform of the time-domain results is
very sensitive to numerical errors, notably those resulting
from the imperfect treatment of the absorbing boundary
conditions used to truncate the numerical computations of
an open structure. Thus, even though the time-domain
results may be reasonably accurate, the frequency-domain
results obtained from their Fourier transform may not be
acceptable as useful data.

The present available absorbing boundary conditions for
the discretized wave equations are either not good enough
in quality or require impractically large computer memo-
ries. Recently, a new type of absorbing boundary algo-
rithm has been developed [29], [30] which can greatly
improve the quality of the local absorbing boundary condi-
tions. Using this new boundary treatment, together with a
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Fig. 2. A generalized microstrip discontinuity.

large enough computation domain, an accurate time-
domain field can be obtained which can be used in the
following Fourier transform step.

The calculated frequency-domain design dadta were com-
pared with the available published results. These compar-
isons further demonstrate that the TD-FD approach is a
viable method for modeling microstrip components.

II. FORMULATION OF THE PROBLEM AND THE
NUMERICAL METHOD

A. General Formulation of the Problem

The generalized microstrip discontinuity under investi-
gation is shown in Fig. 2 (a more general one will be an
N-port structure instead of a two-port), where the strip
and the bottom plane are made of a perfect conductor
(o = o) and the substrate has a relative dielectric constant
of €,. The structure is assumed to be in an open environ-
ment, that is, above the dielectric and the metal strip
surface, free space is assumed to extend to infinity; in the
horizontal direction, apart from the discontinuity region,
the substrate-ground structure also extends uniformly into
infinity. ,

The Maxwell equations governing the solution of this
problem are

AE 1 P
—=—v X

dt eiv

9l 1 ‘

A yxE 1
P P (1)

where i=1,2 represents the substrate and the free-space
region, respectively. At the interface of the two regions, the
field continuity conditions are enforced.

For the uniqueness of the solution of these Maxwell
equations, the following conditions must be satisfied:

a) The initial condition for the fields must be > specified
on the whole domain of interest; that is, E (r t=0)
and H (r ¢ = 0) must be given everywhere inside the
computation domain.

b) The tangential components of E and H on the
boundary of the domain of interest must be given
for all £ > 0. For the boundary at infinity, Sommer-
feld’s radiation condition must be satisfied; that is,
the wave at infinity must be of an outgoing type.
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Fig. 4. Comparison of the numerical and microstrip dispersions (phase

shift per time step): 1: nncrostnp dispersion (w/h=1.5, ¢, =13); 2:
leapfrog scheme, cAt/Ah=1/7; 3: a fourth-order scheme, At /Ah =
1/7[27).

B. The Time-Domain Finite Difference Algorithm

There are many ways to solve the system of Maxwell
equations in (1) numerically. The TD~FD algorithm is one
of the most suitable schemes for the purpose of this
investigation.

To simulate the wave propagation in three dimensions,
Yee [22] arranged the spatial nodal points, where different
components of E and H are to be calculated, as in Fig. 3.

‘The repetitive arrangement of the cells of Fig. 3 fills the

computation domain with a finite difference mesh. Every
component of H can be obtained by the loop integral of E
using the four surrounding E nodal values according to
Maxwell’s curl equation for E. A similar approach holds
for the calculation of H. _

In this algorithm, not only the placement of the £ and
H nodes are off in space by half a space step, but the time
instants when the E or H fields are calculated are also off
by half a time step. To be more specific, if the components
of E are calculated at nAt, where Az is the discretization
unit in time, or the time step, and » is any nonnegative
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integer, the components of H are calculated at (n +1/2)At.
For this reason, this algorithm is also called the leapfrog
method.

To summarize, for a homogeneous region of space, the
discretization of the Maxwell curl equations (1) leads to
the following:

A¢
Er'(i, j k) =E!i, j k)+—
€
Hln+1/2(l.,j+1,k)‘-Hzn+1/2(i,j,k)
Ay
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where Ax, Ay, and Az are the space discretization units in
the x, y, and z directions, respectively, and At is the time
discretization interval. The numbering of the different E
and H components is illustrated in Fig. 3, which is differ-
ent from that in Yee’s original paper due to programming
considerations.

The TD-FD algorithm has several advantages over other
schemes for the calculation of microstrip time-domain
fields. First, the central difference nature of the leapfrog
method makes it a relatively accurate method (second-order
accuracy in both time and space), compared to other
first-order schemes. Second, there is no need for special
treatment of the edge of the microstrip if the tangential E
and vertical H components are arranged on the metal strip
and only the parallel components of the electric field are
arranged on the edge of the strip. Finally, the leapfrog
algorithm has the unique characteristics that the numerical
scheme has no dissipation (amplitude increase or decrease
for any frequency component) and only a small amount of
dispersion [27]. It has been shown [28], [29] that the
numerical dispersion is negligible compared to the physical
dispersion of the microstrip structure, as seen in Fig. 4 for
comparing the microstrip dispersion and numerical disper-
sions for the leapfrog scheme and for a fourth-order finite
difference scheme used to solve the one-dimensional wave
equation. (The actual frequency range of interest for the
microstrip discontinuity problems corresponds to Ak /A,
= 0-0.03.) Thus, no higher order finite difference is needed
for the accurate modeling of the microstrip structures.

For any finite difference scheme, a stability condition
must be found which guarantees that the numerical error
generated 1n one step of the calculation does not accumu-
late and grow. The stability criterion of Yee’s algorithm is
the Courant condition [23]:

1
. 3
1 1 1 (3)
Ax?  Ay?  AZ?

For the special case of Ax = Ay = Az = Ah, (3) becomes

Umax'At <

1
UM < T A (3a)

where v, is the maximum signal phase velocity in the
configuration being considered.

The stability of the absorbing boundary condition can-
not be achieved exactly due to the imperfection of nearly
all the presently available absorbing boundary conditions
for the numerical solution of wave equations (there will
always be some unrealistic reflection wave going back to
the computation domain due to the boundary treatment).
But since the computation lasts for only a limited time,
one can always minimize the influence of the unrealistic
reflections by making the computation domain sufficiently
large and stopping the computation after the useful infor-
mation has been obtained.
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C. Choice of the Excitation Pulse

The excitation pulse used in this investigation has been
chosen to be Gaussian in shape. A Gaussian pulse has a
smooth waveform in time, and its Fourier transform (spec-
trum) is also a Gaussian pulse centered at zero frequency.
These unique properties make it a perfect choice for inves-
tigating the frequency-dependent characteristics of the mi-
crostrip discontinuities via the Fourier transform of the
pulse response.

An ideal Gaussian pulse which propagate in the +z
direction will have the following expression:

t—t,—
1%

T2

g(t,2) =exp| - @)

where v is the velocity of the pulse in the specific medium,
and the pulse has its maximum at z =z, when ¢ = f,.

The Fourier transform of the above Gaussian pulse has
the form

G(f) xexp[—=*T7f?]. (5)
The choices of the parameters T, ¢, and z, are subject to
two requirements. The first is that after the space dis-
cretization interval Az has been chosen fine enough to
represent the smallest dimension of the structure and the
time discretization interval As has been chosen small
enough to meet the stability criterion (3), the Gaussian
pulse must be wide enough to contain enough space divi-
sions for a good resolution. And at the same time, the
spectrum of the pulse must be wide enough (or the pulse
must still be narrow enough) to maintain a substantial
value within the frequency range of interest. If these last
two conditions cannot be satisfied simultaneously, Az has
to be rechosen to be even smaller.

The pulse width W chosen in this work is approximately
20 space steps. We define the pulse width to be the width
between the two symmetric points which have 5 percent of
the maximum value of the pulse. Therefore, T is deter-
mined from "

KZ
exp —(UzT)z —op(-3)(=5%)  (6)
1 10A:z
T=—. (7)

By making this choice of T, the maximum frequency which
can be calculated is

fmax=§1}: (G(—zl?)zo.l) (8)
1 3p
=‘2—' 10Az ©)

which, with the specific Az chosen, is high enough to cover
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the entire frequency range of interest, as will be shown
below in the discussion of the numerical results.

The second requirement is that the choice of z, and ¢,
be made such that initial “turn on” of the excitation will
be small and smooth.

Another consideration in excitation is the specification
of the spatial distribution of the field on the excitation
plane. Ideally, the use of the dominant mode distribution
is preferred. But this distribution is generally not known
with high enough accuracy. By the use of our knowledge of
the modes in the microstrip structure, a very simple field
distribution can be specified at the excitation plane which
serves our purposes almost as well.

The tangential electric field to be specified on the excita-
tion plane is assumed to have only the E, component,
which is distributed uniformly under the strip and is zero
elsewhere. This is not the exact dominant mode field
distribution, although in the latter case the energy is also
concentrated under the strip. But for frequencies under the
cutoff frequency of the first waveguide type higher order
mode and below the strong coupling frequency of the
substrate modes (the lowest one of them will be referred to
below as the inflection frequency), the only mode which
can propagate down the microstrip is the dominant mode.
The substrate modes which do not cut off at those frequen-
cies have imaginary propagation (phase) constants with
respect to the major wave propagation direction due to the
presence of the metal strip and thus can only propagate
sidewards. After the inflection frequency, there will be
modes other than the dominant mode which can propagate
down the line. But those modes will not contaminate our
lower frequency results after the Fourier transform. This is
due to the fact that the physical model and the numerical
method we used are both linear; thus the modes at differ-
ent frequencies will not couple energy from each other.

Therefore, as long as we allow a certain distance for the
Gaussian pulse to propagate out of the excitation plane,
and thus allow the unwanted substrate modes at lower
frequencies to leave the central region of the microstrip,
the low-frequency component of the puise will consist of
the dominant mode only. Graphically, the pulse pattern in
the transverse direction gradually becomes stabilized (to its
actual physical form) and a prominent edge effect mani-
fests itself as the calculation goes on and the pulse is seen
to propagate down the line.

Also, for the reasons mentioned above, caution must be
taken when interpreting the Fourier transformed results
after the inflection frequency, as the time-domain method
does not have the capability of distinguishing between
modes. These results do not correspond to the exact domi-
nant mode results in general, although how great an influ-
ence the higher order modes have on the dominant mode
results 1s still left to be determined.

D. Dielectric— Air Interface Treatment and the Artificial
Absorbing Boundary Conditions

Fig. 5 shows the finite difference computation domain
used for the discontinuity problems (in this case, a mi-
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Fig. 5. Finite difference computation domain for microstrip open-end.

crostrip open end is shown as an example). Due to symme-
try, only half of the structure is placed in the mesh domain
with a magnetic wall at the plane of symmetry.

The finite difference form (2) of Maxwell’s equations is
derived in the uniform region of the medium and therefore
cannot be applied to the nodal points on the dielectric—air
interface or on the boundary planes of the finite difference
mesh. All these points require special treatment.

The field components which lie on the dielectric-air
interface are the tangential components of E (E, and E,)
and the vertical component of H (H,). In calculatmg H_,
(2) can still be used because the value of i does not change
across the boundary, and the £, and E, components used
to calculate H, are the tangential components with respect
to the interface and are thus continuous across the bound-
ary. To calculate E, and E,, however, a finite difference
formulation other than (2) must be derived from the field
continuity conditions across the boundary. The derivation
is given in the Appendix, which is similar to that of Lin
[31] for a two-dimensional finite element scheme, and the
result is that £, can be obtained by the discretization
form of

e+e, JE, OJ0H, AH.
—_— X = (10)
2 at dz Ax
and E, can be obtained through
e+e¢, JE, AH, JH,
— = . (11)
2 at Ax dy

In other words, the average value of ¢ is used in (2) for the
calculation of the interface E, and E, nodes.

The values of E,, E,, and H, vanish on the metal strip
because of the assumption of a perfectly conducting sur-
face. This also holds for the ground plane.

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 36, NO. 12, DECEMBER 1988

Since the computation domain cannot include the whole
space, the finite difference mesh must be truncated to
accommodate the finite computer memories. In solving our
problems, the truncation planes are the side, top, and end
surfaces (Fig. 5). The numerical algorithm on the trunca-
tion planes must simulate the propagation of the outgoing
waves; this is known as the artificial absorbing (or radia-
tion) boundary condition.

The perfect absorbing boundary conditions are usually
global in nature, which makes them quite expensive to
implement and requires excessively large computer memo-
ries. The local absorbing boundary conditions, which make
use of only the fields at the neighboring space and time
nodes, are relatively inexpensive to implement.

There are quite a few local absorbing boundary condi-
tions available, but most of them are not “absorbing”
enough for the purpose of this investigation. As mentioned
in the Introduction, the Fourier transform of the time-
domain results is very sensitive to the reflection errors. A
small amount of reflection may not visibly influence the
time-domain fields, but the transformed results could be
far off.

To improve the local absorbing boundary conditions, a
new approach based on the “local cancellation of the
leading order errors” has been developed and shown to
provide substantial improvement of absorbing qualities.
The boundary treatment used in this investigation will be
discussed below.

Consider the end boundary (z = N;Az) first. In most of
the cases under consideration, the end surface will contain
one end of the microstrip with its other end connected to
the microstrip discontinuity. For most high-dielectric-con-
stant substrates, owing to the guiding nature of the metal
strip, the major direction of the power flow is in the + z
direction, or nearly normal incident. The sideways leakage
and radiation are small. This is quite similar to a one-
dimensional propagation case, and a natural choice of the
boundary condition is to use the field values a few Az
before and a few At earlier for the present boundary fields.

In a microstrip structure, the existence of the dielectric
substrate makes the wave velocity in the main propagation
direction + z be less than the velocity of light ¢ in free
space. Denote this velocity as v (usually v is some fraction
of ¢ and is also weakly dependent on frequency due to the
dispersive nature of the structure). Assume a,-v = ¢, where
@, is a constant. (Rigorously speaking, it will be a weak
function of frequency. Here for the purpose of the bound-
ary treatment only its low-frequency value is adapted). For
the stability criterion (3a) to be satisfied, we must have
(choose Ax=Ay=Az=Ah)

A =cAt=apAt=kAh (12)

where k is a certain constant satisfing

1
< 7=
V3
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and therefore

(13)

From (13) it is clear that we can always make the wave
travel a certain integral number of space steps in some
integral number of time steps by choosing a specific
(better to be less than but close to 1/v3 for high accuracy),
thus avoiding the need for interpolation, and the stability
condition (3a) or (13) is still satisfied.

Take the 50 @ line on the alumina substrate (e, = 9.6,
W/H =1.0) as an example. Here ¢, (f=0)=6.6; then
v=1/Y6.6 -c, or a;=y6.6. If we choose k = 0.514, then
k/a, will be approximately 1/5; that is, the wave will
travel one space step in approximately five time steps.

After choosing the parameters as above, the boundary
value of the fields can now be specified as the value of the
inner nodes at several time steps earlier. Again, for the
alumina case, the boundary condition of the fields will be

E,(N,Az,nAt) = E;[(N;—1)Az,(n—5)At]  (14)

where E,(N;Az, nAt) is any electric field component which
lies on the boundary of the computation domain (actually
only the tangential components of the fields are needed for
later calculations). By using this treatment, a storage of the
next-to-boundary nodal fields for several time steps is
needed. Since this is a storage of two-dimensional data, it
will not increase the memory requirement significantly,
compared to the major three-dimensional storage.

Usually, merely applying the boundary operation as
above will still leave a visible (3—5 percent) amount of
reflection. This is partly due to the fact that the true wave
propagation is not one-dimensional, and partly because
the velocity of the wave is not a constant but rather a
function of frequency.

To improve the earlier boundary treatment, it is found
that if we apply the same kind of boundary condition on
the tangential H field next to the boundary, i.e. (for the
alumina case),

H[(N,=1/2)Az,(n+1/2)At]
= H,[(N,-3/2)Az,(n+1/2=5)At] (15)

and compare it with those H values calculated from the
loop integration of E fields (here the boundary E’s used
are obtained in the previous computation step by using
boundary condition (14)), these two H fields will always
have the property that the errors contained in them due to
the imperfect treatment of the boundary condition will
have opposite signs and the magnitudes of these errors will
maintain a known ratio. Therefore by a weighted average
(1:5 in this case) of these two H fields, we can get an error
cancellation effect and the resulting boundary operation
will have a much improved quality. This kind of error
cancellation approach can actually be applied to any kind
of linear local boundary conditions. A general discussion
of it for the one-dimensional case can be found in [30].
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Fig. 6. dc magnetic field on the front surface due to the electric wall
boundary treatment.

The treatment of the side boundary is similar to that of
the end. But in this case the normal incident approxima-
tion is no longer valid. The direction of incidence of the
wave changes with both time and position. An accurate
and economic treatment of the side boundary condition
has not been found so far. As a compromise, the boundary
tangentlal E fields will always be given the value of their
inner neighbors one time step earlier. A similar operation
is done for the H nodes 1 /2 space step from the bound-
ary, and the error cancellation algorithm still works in this
case. _

On the top plane, only the boundary condition for E
fields is applied in the same way as for the side plane. The
cancellation scheme does not work for the top plane, since
the field is of the evanescent type in that direction.

The front surface needs some special treatment. During
the time when the Gaussian pulse is excited, under the
strip on plane abed of Fig. 5, the vertical field is given the
value of the Gaussian pulse. Elsewhere on the front surface
the electric fields are fixed to be zero. This is equivalent to
an electric wall boundary condition (the magnetic wall or
symmetric boundary condition turned out not to be able to
give a clear tail of the pulse). Following the passing of the
pulse with part of it reflected back from the discontinu-
ities, the front surface should now behave in a “trans-
parent” way, as in the real case. This means that from the
moment the reflected wave reaches the front surface a
radiation type of boundary condition must be “switched
on.” It is found that the early enforced electric wall
boundary condition induced a dc current or tangential
magnetic field on the front surface and nearby (Fig. 6).
This local dc field, although it has no influence on the
traveling pulse, does cause trouble in the boundary treat-
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ment. That is, if we switch on the radiation condition on
this wall, the numerical errors will accumulate very rapidly
and the solutions soon “blow up.”

To solve this problem, what actually has been done is
that after the pulse leaves the source plane and before it is
reflected back from the discontinuities, the radiation
boundary condition is switched on at a surface which is
parallel to the source plane but a few space steps into the
computation domain, and this is sufficient to avoid the
trouble caused by the dc current.

At this stage, after all the boundary conditions have
been properly treated, the numerical solution of the dis-
continuity problems is quite direct.

III. NuUMERICAL RESULTS

In this investigation, five kinds of symmetric microstrip
discontinuities on alumina substrate (¢, = 9.6) for a 50 @
transmission system (W/H =1.0, W= 0.6 mm) have been
studied. They are (refer to Fig. 1) microstrip open-end,
cross and T junctions, step-in-width and gap. Among these
discontinuities, the microstrip open-end case has been given
the most detailed discussion and compared with all the
available published results.

A. Microstrip Open-End Terminations

A microstrip open-end on alumina substrate (¢, = 9.6)
as shown in Fig. 5 is studied first. The parameters of the
structure are as follows:

thickness of substrate: H = 0.6 mm
width of metal strip: W= 0.6 mm
thickness of metal strip: ¢z = 0.0.

To accommodate the structural details of the microstrip,
the mesh parameters have been chosen to be

space interval: Ah = H /10 = 0.06 mm;

Ax=Ay=Az=Ap

N, =40, N,=120, N,;=190;

1,=120, M, =10, M, =5;

/=20, 30, 40, 50 (A#%) have all been used to calculate
the results for comparison;

time step At =k-Akh/c s, where c¢ is the velocity of
light in air and k is a constant restricted by the
stability criterion (3);

k = 0.514 in this calculation.

A Gaussian pulse excitation is used at the front surface.
It is uniform under the strip (in plane abcd of Fig. 4) and
has only the E, component with the following specified
value:

(1—1,) } (16)

E (1) =exp [— 7

where t,=350dr and T=40dy; elsewhere on the front

surface, set E, = E, = 0. The pulse width in space is about

20dh, which is wide enough to obtain good resolution. The
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Fig. 7. Gaussian pulse propagation and reflection in the microstrip
open-end structure: E, component just underneath the strip. (a) Inci-
dent pulse just reaching the open end. (b) Pulse being reflected back
and the surface wave being generated.

frequency spectrum of this pulse is from dc to about 100
GHz.

Fig. 7 shows the calculated time-domain field (£, com-
ponent) for a microstrip open end. The plane where the
plot is drawn is just underneath the metal strip. Part (a) is
the field distribution at the moment when the Gaussian
pulse just reaches the open end and is reflected. The
reflected wave is seen to have the same sign as the incident
wave and is added to the incident wave. Part (b) shows the
reflected wave and a small amount of traveling surface
wave.

The microstrip open end structure is a one-port network
(Fig. 5). Its scattering matrix has only one element, that is,
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Fig. 8. Frequency-dependent S parameter of open end: magnitude and
phase.

S;; or the reflection coefficient. Sy; is defined as

Su1) =123

(17)
where V,(f) is the transformed reflection voltage at the
input plane (i.e., the reference plane T-T in Fig. 5) of the
one-port, and V;,, is the transformed incident voltage at
the same position. In this calculation, the incident field is
obtained from that of an infinitely long microstrip, and the
reflected field from the open end is obtained from the
difference between the total open-end field and the inci-
dent field.

It is common practice in microwave network calculation
for S}, to be calculated away from the discontinuity
through the transmission line formula (refer to Fig. 5.)

Vi (f, 2= )10
Ve (fs 7= D e 707

Su(f) =

_ Vref(fvzlzl)

=T T 2v
Vine (£, 2/=1)

(18)

This is done here to allow the higher order, evanescent
modes which were generated near the discontinuity to die
out. They are not included in the calculation.

Fig. 8 shows the calculated results of the magnitude and
phase of S;;(f) for the open end under consideration. The
uniqueness of the solution to the use of either the field at
one point under the metal strip or the voltage between the
strip and the ground, when substituted into (18) for the
V ’s there, has been checked and found to be well satisfied.
This is expected to be true once the mode distribution is
well established on the line.

The equivalent circuit as shown in Fig. 9 with fre-
quency-dependent circuit parameters is used to model the
microstrip open end. Here :

Y(f)=G(f)+ j2nfC(f) (19)
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Fig. 9. Equivalent circuit of the microstrip open end.
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Fig. 10. Frequency-dependent equivalent circuit parameter C(f)/W
and G(f) for open end. Solid lines denote time-domain results; dashed
lines denote the results of Katehi and Alexopoulos {21].

and Y(f) is related to 5y;(f) through

sy 1
"eisg @

Here Zy(f) is the characteristic impedance of the mi-
crostrip, which is calculated using the ratio of voltage and
current [26].

The calculated C(f) and G(f) are plotted in Fig. 10
together with the results presented by Katehi and Alex-
opoulos [21] for the same structure. The comparison shows
quite an amount of discrepancy, especially for higher fre-
quencies. Although both models should be questioned,
there is an obvious question in the result of [21] for G(f)
in that it does not exhibit a trend to.go smoothly down to
zero as the frequency goes to dc. For C(f); an equivalent -
parameter A/(f) can be derived from it and has been
compared with extensive published results below.

The parameter which can also be used to account for the
capacitive characteristic of the open end is the effective
increase in length Al It is related to C through [32] '

C(f)_AIf) —~ 1
v enipw

where €. is the effective dielectric constant of the mi-
crostrip [32].

The calculated A/(f), together with the comparison
with several other published results, is given in Fig. 11.




1784

0.8
——: time—-domain result Lo
-——:[16] €Er=10 :
ess:[18] €r=97
w1 [19] €Er-97 0.6
c[21]
x :[4] o5
|11 . measurements {21] :
I
=
w 0.4
< I
e rﬂ’m.// ~0.3
Bt P .
0.2
- 0.1
\
~ —_—
——————— —
T T T T T T T T T 0'0
000 002 004 006 008 010 012 044 016 018 020
H/ X\,
Fig 11. Effective length increase A/(f)/H.

+Z direction

Fig. 12. Gaussian pulse propagation and reflection in the microstrip
cross-junction: E, component just underneath the strip.

The normalized frequency range used here corresponds to
the frequencies from zero to 100 GHz for the structure
concerned. The dc result of the time-domain calculation is
very close to the quasi-static result of [4], the low fre-
quency part is close to the experimental result of Edward
(W/H =0.9) [21], and the shape of the curve is similar to
that of James and Henderson [16], which has too low a dc
value though. The peak in the curve which appeared near
the cutoff frequency of the first TE-type higher order
mode of the microstrip has been predicted in [3].

B. Microstrip Cross-Junctions and T Junctions

Using a computation mesh domain similar to that for
the open end (this time with N, =30, N, =65, N,=180,
and Ah= H/8), the symmetric microstrip cross-junctions
and T junctions (W, = W, = W = 0.6 mm) under symmetric
excitations are studied. Here the side boundary is given the
same type of boundary treatment as for the end, since in
this case sideways flow becomes another major direction of
power flow.
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Fig. 14. Frequency-dependent S parameters of the microstrip cross-
Junction. Solid: time-domain result, dash: Mehran, ¢, = 9.7, h = 0.635
mm, W, =W, = 0.56 mm [14].

Figs. 12 and 13 show the time-domain field distributions
for the cross-junction and T junction. The Gaussian pulse
which travels into the cross-junction is seen to split four
ways after it hits the cross-junction. For the case of the T
Jjunction, a small amount of surface wave is observed to
travel past the junction, as most of the energy is either
reflected backward or transmitted sideways.

Figs. 14 and 15 plot the calculated § parameters for the
cross- and T junctions (magnitudes only), together with the
results of Mehran [14] as comparison. These results are
calculated directly from the definition of each S parameter
using the transformed time-domain fields in a way similar
to the open-end case. The reference planes for the net-
works which represent the discontinuities are indicated in
Fig. 1.

The independent S parameters for the cross-junction are
S11> Sy, and S;;. From Fig. 14, it is seen that these three S
parameters all acquire the value 0.5 at dc and very low
frequencies, indicating that the four branches of the cross-
Jjunction each get an equal 1/4 share of the total field
energy; thus the U condition for the S matrix is well
satisfied, and no (detectable) radiation occurs at those
frequency ranges. The same is not true for higher fre-
quency ranges.
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The independent S parameters S;; and S,, for the T
junction under symmetric excitation are plotted in Fig. 15.
Again the U condition is checked to be satisfied in the very
low frequency range.

From Figs. 14 and 15, it is seen that the time-domain

results and the results of Mehran have very good agree-
ment at dc and the lower frequency range. The discrepan-
cies which occurred at very high frequencies are believed
to be partly due to the fact that the waveguide model
approach used in [14] is not able to take into account the
radiation and surface wave generation effects which hap-
pened at higher frequency, and partly due to the fact that
the time-domain results will not represent the exact domi-
nant mode parameters after the inflection frequency, which
is around 35 GHz for this configuration. The fact that the
T junction results have earlier and larger discrepancy fur-
ther confirmed this point, because here the surface wave
becomes another reason for the waveguide model to fail,
adding to the radiation loss.

C. Microstrip Step-in-Width and Gaps

Figs. 16 and 17 show the calculated time-domain fields
and S parameters for the microstrip step-in-width (W, /H
=1.0, W, /W; = 2.0) using a mesh with size similar to that
of T and cross-junction calculations. The S parameters for
the step-in-width are defined as

Vlref (f)

Sh=o5—7

Vlinc (f)

V2trans (f)

VZo:(f)

S21 - Vlinc (f)

VZOl(f)

(22)

(23)

V2ref (f)
2 Y () )
Sp2= 8y (25)
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Fig. 16. Gaussian pulse propagation and reflection 1in the microstrip
step-in-width structure: £, component just underneath the strip.
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where Zy(f) and Zy,( f) are the characteristic impedances
of the microstrip lines connected to port 1 and 2 of the
step, respectively, and are calculated in the same way as
shown in [26].

The calculated frequency dependence of the S parame-
ters of the step-in-width is quite flat over a large frequency
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Fig. 18. Gaussian pulse propagation and reflection in the microstrip

gap: E, component just underneath the strip.

range. It is in good agreement with the result of Koster
and Jansen [33].

Figs. 18 and 19 are the calculated time-domain fields
and S parameters for the microstrip gap discontinuity
(S/H = 0.5). The dc block characteristics of the gap are
exhibited in the S parameter results.

IV. CONCLUSION

It has been shown that the time-domain finite difference
approach is capable of calculating the dispersion character-
istics of the microstrip discontinuities over a large fre-
quency range. It is a very general method and can find
wide applications in modeling various microwave compo-
nents. Further investigations on different computer-mem-
ory-saving schemes will make this method more suitable
for CAD purposes.

APPENDIX

To calculate the E, and E, components on the dielec-

tric—air interface, we start with the Maxwell equation
(A1)

where i =1, 2 denotes the dielectric constant in the sub-
strate and the air region, respectively. Taking the calcula-
tion of E, as an example, we have, from (Al),
JE, 1(dH, O0H,
ar e\ 8z x|
Since E,, H, and JH, /dz are continuous across the

interface, it is very obvious that dH, /dx is discontinuous
across the boundary; i.e., we can get from (A2)

e o

€, dx € € ¢ 9z

(A2)

1
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Therefore on each side of the interface and at positions
very close to the boundary, we can write

JE, 0H, ( aH2>
1

617 dz ax
AT
29t 9z Ix |,
Approximate (dH, /d,), and (dH./3,), by
aH,\  H,(m)~ H.(m~-1/2)
( dx )1z E
2
(881iz)quz(m+1/AZ)3 H,(m) (AS)
2

where m is assumed to be the position of the interface, and
m+1/2 and m—1/2 denote the positions a half step
above and below the interface, respectively.

Substituting (A5) into (A4), we get

€

H,(m) = H,(m+1/2)
€T 6
€, —¢ IH

+ = .
€ t+e, dz Bx/2. (A6)

Hz(m—1/2)+
€+ €,y

Substituting the H_(m) value of (A6) back into (A5),
substituting the resulting (AS) into the two expressions in
(A4), and adding the two together, we get

agte; JE, 9H, H.(m+1/2)—H,(m—1/2)

TR Ax
0H, AH, A7
T 9z Ax (A7)
Similarly, we get
e+e, JE, AH,  0H,
2 e T -—=, (A8)
2 at Ax dy

Thus we can further discretize (A7) and (A8) to calculate
the tangential E components on the dielectric—air inter-
face.
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1t is straightforward to show that this boundary approxi-

mation is of first order in space and second order in time.
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