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Time-Domain Finite Difference Approach to
the Calculation of the Frequency-~ Dependent
Characteristics of Microstrip Discontinuities

XIAOLEI ZHANG AND KENNETH K. MEI, FELLOW, IEEE

Abstract —The frequency-dependent characteristics of the microstrip

dkcontinnities have previously been analyzed rising several full-wave ap-

proaches. The time-domain finite different (TD-FD) method presented in

this paper is another independent approach and is relatively new in its

application for obtaining the freqnency-domain resnlts for microwave

components [26]. The pnrpose of this paper is to establish the validity of

the TD-FD method in modeling circuit components for MMIC CAD

applications.

I. INTRODUCTION

M ICROSTRIP discontinuities (Fig. 1) are the basic

constituent elements of microstrip integrated cir-

cuits. The accurate modeling of these discontinuities using

different numerical approaches is one of the most impor-

tant topics in microwave CAD. The current cut-and-try

cycles in the design of microstrip integrated circuits will be

greatly reduced if the frequency-dependent characteristics

of the discontinuities can be obtained with certainty. Us-

ing network concepts, various microstrip resonators, cou-

plers, and filters can be directly analyzed from the inter-

connection of rnicrostrip discontinuities and microstrip

line segments.

The study of microstrip discontinuities started in the

early 1960’s. For nearly a decade, the analyses were mostly

quasi-static in nature [1]–[12]. The first accurate full-wave

frequency-dependent analysis appeared around 1975

[13] -[15]. This approach began with the use of a waveguide

model with electric-wall top and bottom planes and mag-

netic-wall sides planes to characterize the microstrip. The

effective dielectric constant of the filling and the width of

the guide are assumed to be frequency dependent and are

determined in such a way that the model and the actual

microstrip line have the same frequency-dependent propa-

gation constant and characteristic impedance. Using the

waveguide model to represent the original microstrip, the

fields at the region of the discontinuities are expanded into

waveguide modes, and the modes of different regions are

matched at intersection planes. From the matching coeffi-
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cients the S matrix for different propagation modes can

thus be calculated. The waveguide model approach is

efficient and has reasonable accuracy for calculating the

magnitude of the S parameters in the lower frequency

range, but it is not able to take into account the radiation

effect (since the model is a closed one) and the surface

wave generation. Besides, the mode-matching step will also

introduce error due to the fact that the actual modes

excited in the microstrip discontinuities are not the sa:me

as those used in the model and accordingly will not match

in exactly the same way. There is also an obvious limita-

tion on the kinds of structures this method can be applied

to. It cannot, for example, be used to analyze the mi-

crostrip open-end structure where one side of the disconti-

nuity is not connected to a microstrip and, where the

radiation and surface waves are present.

A full-wave approach to the microstrip open end prob-

lem was first proposed by James and Henderson in 1979

[16]. The analysis on the far end of the microstrip open

end, where the surface wave and the radiation wave are the

constituents of the fiends, is carried out using an analytic

mode-expansion technique. On the microstrip side, a TEM

wave is taken as the dominant mode incident field, and the

semiempirical results for the propagation constant and the

characteristic impedance are used for this incident wave.

The fields at both sides are matched at the interface and a

variational step is taken to reduce the error introduced by

the assumption of the TEM field pattern where the electric

field has a vertical constant value under the strip and is

zero elsewhere in the transverse plane. Mainly due to the

roughness of the field pattern assumed, the results of this

method are not very accurate, but the analysis did provide

valuable physical insight.

Another important method which has been used by

several investigators to model the microstrip discontinu-

ities is the spectral–domain approach [17]–[19]. In using

this method to analyze the shielded or covered structures,

the fields and currents involved are Fourier transformed

(with respect to the space variables) into the so-called
spectral domain. The shape of the current on the mi-

crostrip is assumed to be close to the actual current

distribution and is easily Fourier-transformable. The spec-

tral-domain components of the fields and currents are
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Fig. 1. Microstrip dlscontmtutles. (a) Open-end. (b) Gap. (c) Step-in-width. (d) T Junction. (e) Cross-junction. (f ) Bend.

related according to the field continuity and boundary

conditions and thus set up a system of equations for the

variables. The inverse-transformed field solutions are used

to calculate the S’ parameters.

Although a relatively accurate method for the type of

components it is capable of calculating, the spectral-

domain approach depends strongly on the current distribu-

tions assumed, which in many cases are hard to specify

with high accuracy; thus it is limited in its applications.

Besides, the frequency range which can be dealt with by

this method is limited due to the difficulties which arise

near the cutoff frequency of the higher order mode of the

microstrip.

In recent years, the moment method has also been used

by several investigators [20], [21] on the discontinuity
problems. This method could in principle be an accurate

one with wide applications, but due to the complexity of

the Green’s functions for the microstrip configurations it is

not economical to make very fine numerical divisions to

the microstrip for accurate results. In fact in many cases

only a rational function form is used to represent the

transverse current distribution on the microstrip, which

may not correspond to the actual current distribution up

to a certain frequency.
All the above-mentioned investigations are done in fre-

quency domain; that is, the data for the whole frequency

range are calculated one frequency at a time. It is an

expensive task when the results of a wide frequency range

are sought. This led us to seek an alternative way of

calculating the frequency-domain data. Since a pulse re-

sponse contains all the information of a system for the

whole frequency range, it is a natural approach to use a

pulse in the time domain to excite the microstrip struc-

tures, and from the time-domain pulse response to extract

the frequency-domain characteristics of the system via the

Fourier transform [26].

One numerical scheme which can be used to calculate

the time-domain fields is the time-domain finite difference

(TD-FD) method. It was first proposed by K. S. Yee in

1966 [22] and has been used by many investigators to solve

electromagnetic scattering problems. Other numerical

methods which can be used to solve this type of initial

boundary value problem include the TLM method and

Bergeron’s method. Among these methods the TD–FD

method is the most direct from a mathematical point of

view, and is especially suitable for the accurate calculation

of the microstrip fields, the reasons for which will be

explained below.

Early investigators used the time-domain methods as a

tool to obtain qualitative results that graphically illustrate

the field propagation rather than to obtain design data

via the Fourier transform of time domain results [24], [25].

In the process of our investigation, it has been found [26]

that the Fourier transform of the time-domain results is

very sensitive to numerical errors, notably those resulting

from the imperfect treatment of the absorbing boundary

conditions used to truncate the numerical computations of

an open structure. Thus, even though the time-domain

results may be reasonably accurate, the frequency-domain

results obtained from their Fourier transform may not be

acceptable as useful data.
The present available absorbing boundary conditions for

the discretized wave equations are either not good enough

in quality or require impractically large computer memo-

ries. Recently, a new type of absorbing boundary algo-

rithm has been developed [29], [30] which can greatly

improve the quality of the local absorbing boundary condi-

tions. Using this new boundary treatment, together with a
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Fig. 2. A generalized microstrip discontinuity.
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large enough computation domain, an accurate time-

domain field can be obtained which can be used in the

following Fourier transform step.

The calculated frequency-domain design data were com-

pared with the available published results. These compar-

isons further demonstrate that the TD–FD approach is a

viable method for modeling microstrip components.

H. FORMULATION OF THE PROBLEM AND THE

NUMERICAL METHOD

A. General Formulation of the Problem

The generalized microstrip discontinuity under investi-

gation is shown in Fig. 2 (a more general one will be an

N-port structure instead of a two-port), where the strip

and the bottom plane are made of a perfect conductor

(o= co) and the substrate has a relative dielectric constant

of c,. The structure is assumed to be in an open environ-

ment, that is, above the dielectric and the metal strip

surf ace, free space is assumed to extend to infinity; in the

horizontal direction, apart from the discontinuity region,

the substrate-ground structure also extends uniformly into

infinity.

The Maxwell equations governing the solution of this

problem are

82 I
=–VXHx (i

ai7 I
—= — —Vxi
at p~

(1)

where i =1,2 represents the substrate and the free-space

region, respectively. At the interface of the two regions, the

field continuity conditions are enforced.

For the uniqueness of the solution of these Maxwell

equations, the following conditions must be satisfied:

a)

b)

The initial condition for the fields must be specified

on the whole domain of interest; that is, ~(;, t = O)

and fi( ~, t = O) must be given everywhere inside the
computation domain.

The tangential components of ~ and fi on the

boundary of the domain of interest must be given

for all t >0. For t,he boundary at infinity, Sommer-

feld’s radiation condition must be satisfied; that is,

the wave at infinity must be of an outgoing type.

Ex[i, j+l, k.ll

l— Ey[l-l, i+l, kl

— Ay —— L.,

Fig, 3. Yee’s mesh,
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Fig. 4. Comparison of the numerical and microstnp dispersions (phase

shift per time step): 1: microstrip dispersion (w/h =1.5, t, = 13); 2:

leapfrog scheme, cAt/A h = 1/7; 3: a fourth-order scheme, cAt/A h =

1/7 [27].

B. The Time-Domain Finite Difference Algorithm

There are many wtiys to solve the system of Maxwell

equations in (1) numerically. The TD–FD algorithm is one

of the most suitable schemes for the purpose of this

investigation.

To simulate the wave propagation in three dimensions,

Yee, [22] arrange~ the :sp~tial nodal points, where different

components of E and H are to be calculated, as in Fig. 3.

The repetitive arrangement of the cells of Fig. 3 fills the

computation domain with a finite difference mesh. Ever~

component of F can be obtai~ed by the loop integral of E

using the four surrounding E nodal values according to

Maxwell’s curl equatiog for ~. A similar approach holds

for the calculation’of H.

In this algorithm, not only the placement of the ~ and

1? nodes are off in space by half a space step, but the time

instants when the ~ or ~ fields are calculated are also off

by ~alf a time step. To be more specific, if the components

of E are calculated at n A t,where At is the discretization

unit in time, or the time step, and n is any nonnegative
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integer, the components of ~ are calculated at (n + l/2) At.

For this reason, this algorithm is also called the leapfrog

method.

To summarize, for a homogeneous region of space, the

discretization of the Maxwell curl equations (1) leads to

the following:

E;+ ’(i, j,k) =E;(i, j,k)+ ~
c

“1

H“+l/2(i, j+l, k)– H:+l/2(i, j,k)~

Ay

H;+l/2(i, j,k+l)– H;+l/2(i, j,k)
—

Az 1

EJ~l(i, j,k) =E~(i, j,k)+ g

[

H;+ ’/2(i, j~k+l)-HJ+l/2(i, j,k)

Az

H~+l/2(i +1, j,k)– H~+l/2(i, j,k)
—

Ax 1

.EJ+’(i, j,k)

At
=Ej(i, j,k)+—

E

“[Hf+l/2(i+ l,j,k)-H~+l/2(i, j,k)

Ax

H;+l/2(i, j+l, /c)- H~+’/2(i, j,k)
—

Ay 1

~:+ ’/2(z, j,k) =H/-’/2(i, j,k)- ~

“[

E~(i, j,k)– E~(i, j–l, /c)

Ay

E~(i, j,k)– E~(i, j,k-1)
—

Az 1

H~+l/2(i, j,k) =HJ-1/2(i, j,k)- ~

[

liJ(i, j,k)-E~(i, j,k-1)

Az

E#(i, j,k)– E~(i–1, j,k)
—

Ax 1

H~+l/2(i, j,k) =Hf-’/2(i, j,k)- ~

“[

E~(i, j,k)-E,~(i-l, j,k)

Ax

E:(i, j,k)– E~(i,j-l, k)
—

Ay 1
(2)

where Ax, A y, and Az are the space discretization units in

the x, y, and z directions, respectively, and At is the tim~

discre~zation interval. The numbering of the different E

and H components is illustrated in Fig. 3, which is differ-

ent from that in Yee’s original paper due to programming

considerations.

The TD–FD algorithm has several advantages over other

schemes for the calculation of microstrip time-domain

fields. First, the central difference nature of the leapfrog

method makes it a relatively accurate method (second-order

accuracy in both time and space), compared to other

first-order schemes. Second, there is no need for special

treatment of ~he edge of the microstrip if the tangential E

and vertical H components are arranged on the metal strip

and only the parallel components of the electric field are

arranged on the edge of the strip. Finally, the leapfrog

algorithm has the unique characteristics that the numerical

scheme has no dissipation (amplitude increase or decrease

for any frequency component) and only a small amount of

dispersion [27]. It has been shown [28], [29] that the

numerical dispersion is negligible compared to the physical

dispersion of the microstrip structure, as seen in Fig. 4 for

comparing the microstrip dispersion and numerical disper-

sions for the leapfrog scheme and for a fourth-order finite

difference scheme used to solve the one-dimensional wave

equation. (The actual frequency range of interest for the

microstrip discontinuity problems corresponds to Ah /AO

= 0–0.03.) Thus, no higher order finite difference is needed

for the accurate modeling of the microstrip structures.

For any finite difference scheme, a stability condition

must be found which guarantees that the numerical error

generated in one step of the calculation does not accumu-

late and grow. The stability criterion of Yee’s algorithm is

the Courant condition [23]:

‘m’x”At<*“ ‘3)
For the special case of Ax= Ay = Az = Ah, (3) becomes

where Vm= is the maximum signal phase velocity in the

configuration being considered.

The stability of the absorbing boundary condition can-

not be achieved exactly due to the imperfection of nearly

all the presently available absorbing boundary conditions

for the numerical solution of wave equations (there will

always be some unrealistic reflection wave going back to

the computation domain due to the boundary treatment).

But since the computation lasts for only a limited time,

one can always minimize the influence of the unrealistic

reflections by making the computation domain sufficiently

large and stopping the computation after the useful infor-

mation has been obtained.
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C. Choice of the Excitation Pulse

The excitation pulse used in this investigation has been

chosen to be Gaussian in shape. A Gaussian pulse has a

smooth waveform in time, and its Fourier transform (spec-

trum) is also a Gaussian pulse centered at zero frequency.

These unique properties make it a perfect choice for inves-

tigating the frequency-dependent characteristics of the mi-

crostrip discontinuities via the Fourier transform of the

pulse response.

An ideal Gaussian pulse which propagate in the + z

direction will have the following expression:

i “-’o~~rl‘4)g(t, z) =exp –

where u is the velocity of the pulse in the specific medium,

and the pulse has its maximum at z = Z. when t= to.

The Fourier transform of the above Gaussian pulse has

the form

G(f) aexp[-n2T2f2]. (5)

The choices of the parameters T, to, and Z. are subject to

two requirements. The first is that after the space dis-

cretization interval Az has been chosen fine enough to

represent the smallest dimension of the structure and the

time discretization interval At has been chosen small

enough to meet the stability criterion (3), the Gaussian

pulse must be wide enough to contain enough space divi-

sions for a good resolution. And at the same time, the

spectrum of the pulse must be wide enough (or the pulse

must still be narrow enough) to maintain a substantial

value within the frequency range of interest. If these last

two conditions cannot be satisfied simultaneously, Az has

to be rechosen to be even smaller.

The pulse width W chosen in this work is approximately

20 space steps. We define the pulse width to be the width

between the two symmetric points which have 5 percent of

the maximum value of the pulse. Therefore, T is deter-

mined from’

nw’()T–— =exp(–3)( =5%)
‘Xp (uT)’

(6)

or

1 10Az
.—T=~ ~ . (7)

By making this choice of T, the maximum frequency which

can be calculated is

‘m==*(G(a=O1)(8)

1 fiu
=—, —

2 10Az
(9)

which, with the specific A z chosen, is high enough to cover

the entire frequency range of interest, as will be shown

below in the discussion of the numerical results.

The second requirement is that the choice of ZO and 10

be made such that initiall “turn on” of the excitation will

be small and smooth.

Another consideration in excitation is the specification

of the spatial distribution of the field on the excitation

plane. Ideally, the use of the dominant mode distribution

is preferred. But this distribution is generally not known

with high enough accuracy. By the use of our knowledge of

the modes in the microstrip structure, a very simple field

distribution can be specified at the excitation plane which

serves our purposes almost as well.

The tangential electric field to be specified on the exCitii-

tion plane is assumed to have only the EX component,

which is distributed uniformly under the strip and is zero

elsewhere. This is not the exact dominant mode field

distribution, although in the latter case the energy is also

concentrated under the strip. But for frequencies under the

cutoff frequency of the first waveguide type higher order

mode and below the strong coupling frequency of the

substrate modes (the lowest one of them will be referred to

below as the inflection frequency), the only mode which

can propagate down the microstrip is the dominant modle.

The substrate modes which do not cut off at those frequen-

cies have imaginary propagation (phase) constants with

respect to the major wave propagation direction due to tlhe

presence of the metal strip and thus can only propagate

sidewards. After the inflection frequency, there will ‘be

modes other than the dominant mode which can propagate

down the line. But those modes will not contaminate our

lower frequency results after the Fourier transform. This is

due to the fact that the physical model and the numerical

method we used are both linear; thus the modes at differ-

ent frequencies will not couple energy from each other.

Therefore, as long as we allow a certain distance for the

Gaussian pulse to propagate out of the excitation plane,

and thus allow the unwanted substrate modes at lower

frequencies to leave the central region of the microstrip,

the low-frequency component of the pulse will consist of

the dominant mode only. Graphically, the pulse pattern in

the transverse direction gradually becomes stabilized (to its

actual physical form) and a prominent edge effect mani-

fests itself as the calculation goes on and the pulse is seen

to propagate down the line.

Also, for the reasons mentioned above, caution must be

taken when interpretimlg the Fourier transformed results

after the inflection frequency, as the time-domain method

does not have the capability of distinguishing between

modes. These results do not correspond to the exact domi-

nant mode results in general, although how great an influ-

ence the higher order modes have on the dominant mode
results is still left to be determined.

D. Dielectric– Air Interface Treatment and the Artificial

Absorbing Boundary Conditions

Fig. 5 shows the finite difference computation domain

used for the discontinuity problems (in this case, a mi-
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Fig. 5. Finite difference computation domain for mlcrostrip open-end.

crostrip open end is shown as an example). Due to symme-

try, only half of the structure is placed in the mesh domain

with a magnetic wall at the plane of symmetry.

The finite difference form (2) of Maxwell’s equations is

derived in the uniform region of the medium and therefore

cannot be applied to the nodal points on the dielectric–air

interface or on the boundary planes of the finite difference

mesh. All these points require special treatment.

The field components which lie on the+dielectric–air

interface are the tangential com~onents of E (EY and E=)

and the vertical component of H (H.). In calculating HX,

(2) can still be used because the value of p does not change

across the boundary, and the EY and E, components used

to calculate HX are the tangential components with respect

to the interface and are thus continuous across the bound-

ary. To calculate EY and EZ, however, a finite difference

formulation other than (2) must be derived from the field

continuity conditions across the boundary. The derivation

is given in the Appendix, which is similar to that of Lin

[31] for a two-dimensional finite element scheme, and the

result is that Ey can be obtained by the discretization
form of

c1+ Cz dEY dHX AH.
— .—= —.

2 at az z
(lo)

and E= can be obtained through

c1 -t C2 dEz AHY dHX
— .—= —— —

2 dt Ax ay “
(11)

In other words, the average value of c is used in (2) for the

calculation of the interface EY and E= nodes.

The values of E,, E=, and HX vanish on the metal strip

because of the assumption of a perfectly conducting sur-

face. This also holds for the ground plane.

Since the computation domain cannot include the whole

space, the finite difference mesh must be truncated to

accommodate the finite computer memories. In solving our

problems, the truncation planes are the side, top, and end

surfaces (Fig. 5). The numerical algorithm on the trunca-

tion planes must simulate the propagation of the outgoing

waves; this is known as the artificial absorbing (or radia-

tion) boundary condition.

The perfect absorbing boundary conditions are usually

global in nature, which makes them quite expensive to

implement and requires excessively large computer memo-

ries. The local absorbing boundary conditions, which make

use of only the fields at the neighboring space and time

nodes, are relatively inexpensive to implement.

There are quite a few local absorbing boundary condi-

tions available, but most of them are not “absorbing”

enough for the purpose of this investigation. As mentioned

in the Introduction, the Fourier transform of the time-

domain results is very sensitive to the reflection errors. A

small amount of reflection may not visibly influence the

time-domain fields, but the transformed results could be

far off.

To improve the local absorbing boundary conditions, a

new approach based on the “local cancellation of the

leading order errors” has been developed and shown to

provide substantial improvement of absorbing qualities.

The boundary treatment used in this investigation will be

discussed below.

Consider the end boundary (z= NqAz ) first. In most of

the cases under consideration, the end surface will contain

one end of the microstrip with its other end connected to

the microstrip discontinuity. For most high-dielectric-con-

stant substrates, owing to the guiding nature of the metal

strip, the major direction of the power flow is in the + z

direction, or nearly normal incident. The sideways leakage

and radiation are small. This is quite similar to a one-

dimensional propagation case, and a natural choice of the

boundary condition is to use the field values a few Az

before and a few At earlier for the present boundary fields.

In a microstrip structure, the existence of the dielectric

substrate makes the wave velocity in the main propagation

direction + z be less than the velocity of light c in free

space. Denote this velocity as u (usually u is some fraction

of c and is also weakly dependent on frequency due to the

dispersive nature of the structure). Assume al-u= c, where

al is a constant. (Rigorously speaking, it will be a weak
function of frequency. Here for the purpose of the bound-

ary treatment only its low-frequency value is adapted). For

the stability criterion (3a) to be satisfied, we must have

(choose Ax= Ay = Az = Ah)

v~=At=c At=alv At=k Ah (12]

where k is a certain constant satisfing

1
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and therefore

k
v. At= —. Ah.

al
(13)

0.010
-1

From (13) it is clear that we can always make the wave

travel a certain integral number of space steps in some

integral number of time steps by choosing a specific k

(better to be less than but close to 1/6 for high accuracy),

thus avoiding the need for interpolation, and the stability

condition (3a) or (13) is still satisfied.

Take the 50 Q line on the alumina substrate ([, = 9.6,

W/H =1.0) as an example. Here C,,ff (~ = O) = 6.6; then

v = l/~. c, or al= ~. If we choose k = 0.514, then

k/al will be approximately 1/5; that is, the wave will

travel one space step in approximately five time steps.
After choosing the parameters as above, the boundary

value of the fields can now be specified as the value of the

inner nodes at several time steps earlier. Again, for the

alumina case, the boundary condition of the fields will be

El(N,Az, rzAt) =Ei[(N, -l) AZ, (n-5)Atl (14)

where E, (N3 Az, n A t ) is any electric field component which

lies on the boundary of the computation domain (actually

only the tangential components of the fields are needed for

later calculations). By using this treatment, a storage of the

next-to-boundary nodal fields for several time steps is

needed. Since this is a storage of two-dimensional data, it

will not increase the memory requirement significantly,

compared to the major three-dimensional storage.

Usually, merely applying the boundary operation as

above will still leave a visible (3–5 percent) amount of

reflection. This is partly due to the fact that the true wave

propagation is not one-dimensional, and partly because

the velocity of the wave is not a constant but rather a

function of frequency.

To improve the earlier boundary treatment, it is found

that if we apply the same kind of boundary condition on

the tangential R field next to the boundary, i.e. (for the

alumina case),

H,[(fv3-1/2)Az, (n+l/’2]At]

= Hi[(N3-3/’2)Az, (n +1/2 -5) At] (15)

and compare it with+those fi values calculated from the

loop integration of E fields (here the boundary Es used

are obtained in the previous comput~tion step by using

boundary condition (14)), these two H fields will always

have the property that the errors contained in them due to

the imperfect treatment of the boundary condition will

have opposite signs and the magnitudes of these errors will

maintain a known ratio. Therefore by a weighted average

(1 :5 in this case) of these two 1? fields, we can get an error

cancellation effect and the resulting boundary operation

will have a much improved quality. This kind of error

cancellation approach can actually be applied to any kind

of linear local boundary conditions. A general discussion

of it for the one-dimensional case can be found in [30].

Fig. 6. dc magnetic field on the front surface due to the electric wall

boundary treatment.

The treatment of the side boundary is similar to that (of

the end. But in this case the normal incident approxima-

tion is no longer valid. The direction of incidence of the

wave changes with both time and position. An accurate

and economic treatment of the side boundary condition

has not bee~ found so far. As a compromise, the boundary

tangential E fields will always be given the value of their

inner neighbors one time step earlier. A similar operation

is done for the H nodes 1/2 space step from the bound-

ary, and the error cancellation algorithm still works in this

case.

On the top plane, only the boundary condition for 1?

fields is applied in the same way as for the side plane. The

cancellation scheme does not work for the top plane, since

the field is of the evanescent type in that direction.

The front surface needs some special treatment. During

the time when the Gaussian pulse is excited, under the

strip on plane abed of Fig. 5, the vertical field is given the

value of the Gaussian pulse. Elsewhere on the front surface

the electric fields are fixed to be zero. This is equivalent to

an electric wall boundary condition (the magnetic wall or

symmetric boundary condition turned out not to be able to

give a clear tail of the pulse). Following the passing of the

pulse with part of it reflected back from the discontinu-

ities, the front surface should now behave in a “ trans-

parent” way, as in the real case. This means that from the

moment the reflected wave reaches the front surface a

radiation type of boundary condition must be “switched

on.” It is found that the early enforced electric wall

boundary condition induced a dc current or tangential

magnetic field on the front surface and nearby (Fig. 6).

This local dc field, although it has no influence on the

traveling pulse, does cause trouble in the boundary trcat-
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ment. That is, if we switch on the radiation condition on

this wall, the numerical errors will accumulate very rapidly

and the solutions soon “blow up.”

To solve this problem, what actually has been done is

that after the pulse leaves the source plane and before it is

reflected back from the discontinuities, the radiation

boundary condition is switched on at a surface which is

parallel to the source plane but a few space steps into the

computation domain, and this is sufficient to avoid the

trouble caused by the dc current.

At this stage, after all the boundary conditions have

been properly treated, the numerical solution of the dis-

continuity problems is quite direct.

III. NUMERICAL I&SULTS

In this investigation, five kinds of symmetric microstrip

discontinuities on alumina substrate (c, = 9.6) for a 50 Q

transmission system (W/H = 1.0, W= 0.6 mm) have been

studied. They are (refer to Fig. 1) microstrip open-end,

cross and T junctions, step-in-width and gap. Among these

discontinuities, the microstrip open-end case has been given

the most detailed discussion and compared with all the

available published results.

A. Microstrip Open-End Terminations

A microstrip open-end on alumina substrate (~,= 9.6)

as shown in Fig. 5 is studied first. The parameters of the

structure are as follows:

thickness of substrate: H = 0.6 mm

width of metal strip: W = 0.6 mm

thickness of metal strip: t = 0.0.

To accommodate the structural details of the microstrip,

the mesh parameters have been chosen to be

space interval: Ah = H/10 = 0.06 mm;

Ax= Ay=Az=Ah;

NI = 40, Nz =120, N3 =190;

11=120, MI=lO, M,=5;

1 = 20, 30, 40, 50 (Ah) have all been used to calculate

the results for comparison;

time step At= k. Ah /c s, where c is the velocity of

light in air and k is a constant restricted by the

stability criterion (3);

k = 0.514 in this calculation.

A Gaussian pulse excitation is used at the front surface.

It is uniform under the strip (in plane abed of Fig. 4) and

has only the EX component with the following specified

value:

[1(t-to)’EX(t) =exp – ~z (16)

where to= 350 dt and T = 40 dt; elsewhere on the front

surface, set E, = EY = O. The pulse width in space is about

20dh. which is wide enough to obtain good resolution. The

1.2 --- +Z direction

EX

/

36.0

Q

(b)

Fig. 7. Gaussian pulse propagation and reflection in the rnicrostrip

open-end structure: EX component just underneath the strip. (a) Inci-
dent pulse Just reaching the open end. (b) Pulse being reflected back
and the surface wave being generated.

frequency spectrum of this pulse is from dc to about 100
GIlz.

Fig. 7 shows the calculated time-domain field (EX com-

ponent) for a microstrip open end. The plane where the

plot is drawn is just underneath the metal strip. Part (a) is

the field distribution at the moment when the Gaussian

pulse just reaches the open end and is reflected. The

reflected wave is seen to have the same sign as the incident

wave and is added to the incident wave. Part (b) shows the

reflected wave and a small amount of traveling surface

wave.

The microstrip open end structure is a one-port network

(Fig. 5). Its scattering matrix has only one element, that is,
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Fig. 8. Frequency-dependent S parameter of open end: magnitude and
phase.

5’11 or the reflection coefficient. Sll is defined as

‘r.f ( f )

‘ll(f) = ync(”f)
(17)

where Vre~( f ) is the transformed reflection voltage at the

input plane (i.e., the reference plane T– T in Fig. 5) of the

one-port, and VinC is the transformed incident voltage at

the same position. In this calculation, the incident field is

obtained from that of an infinitely long microstrip, and the

reflected field from the open end is obtained from the

difference between the total open-end field and the inci-

dent field.

It is common practice in microwave network calculation

for Sll to be calculated away from the discontinuity

through the transmission line formula (refer to Fig. 5.)

Vr,f(f, z’= Z)”eY(f){
Sll(f) = Vinc(f,z’= 1).e-~(f)~

_ Kef(f, z’=z)
—

Vinc(f, z’=l)
.e2Y(~)1. (18)

This is done here to allow the higher order, evanescen$

modes which were generated near the discontinuity to diq

out. They are not included in the calculation.

Fig. 8 shows the calculated results of the magnitude and

phase of S1l( f ) for the open end under consideration. The

uniqueness of the solution to the use of either the field at

one point under the metal strip or the voltage between the

strip and the ground, when substituted into (18) for the

V‘s there, has been checked and found to be well satisfied.

This is expected to be true once the mode distribution is

well established on the line.

The equivalent circuit as shown in Fig. 9 with fre-

quency-dependent circuit parameters is used to model the

microstrip open end. Here

Y(f) =G(f)+j2rfC(f) (19)

IIc(f)-. G(f)

Y(f)

Fig. 9. Equivalent circuit of the microstrip open end.

-.

20.0
t

o.oL-’f’ I I I 0.0
0.0 10.0 20.0 so.” 40.0 50.0 60.0

FREQUENCY (GHZ)

Fig. 10. Frequeney-dependent equivalent circuit parameter C(~ )/ W

and G(~) for open end. Solid lines denote time-domain results; dashed
lines denote the results of IKatehi and Alexopoulos {21].

1
4.0

2.0

and Y(f) is related to Sll( f ) through

“l–sll(f) 1
.—

‘(f) ‘i+s,l(f) z,(f) “
(2,0)

Here 2.( f) is the characteristic impedance of the rni-

crostrip, which is calculated using the ratio of voltage and

current [26].

The calculated C(f) and G(f) are plotted in Fig. 10

together with the results presented by Katehi and Alex-

opoulos [21] for the same structure. The comparison shows

quite an amount of ‘discrepancy, especially for higher fre-

quencies. Although bcth models should be questioned,

there is an obvious question in the result of [21] ‘for G(f)

in that it does not exhibit a trend to, go smoothly down to

zero as the frequency goes to dc. For C(f); an equivalent

parameter Al(f) can be derived’ from it and has been

compared with extensive published results below.

The paraeter which can also be used to account for the

capacitive characteristic of the open end is the effective

increase in length Al. It is related to C through [32]

C(f) _ Al(f)

w Tic+ hz,(f) w
(21)

where ceff is the effective dielectric constant of the mi-

crostrip [32].

The calculated Al(f), together with the comparison

with several other published results, is given in Fig. 11.
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Fig. 12. Gaussian pulse propagation and reflection in the microstnp
cross-junction: E, component Just underneath the strip.

The normalized frequency range used here corresponds to

the frequencies from zero to 100 GHz for the structure

concerned. The dc result of the time-domain calculation is

very close to the quasi-static result of [4], the low fre-

quency part is close to the experimental result of Edward

(W/H = 0.9) [21], and the shape of the curve is similar to

that of James and Henderson [16], which has too low a dc

value though. The peak in the curve which appeared near

the cutoff frequency of the first TE-type higher order
mode of the microstrip has been predicted in [3].

B. Microstrip Cross-Junctions and T Junctions

Using a computation mesh domain similar to that for

the open end (this time with NI = 30, Nz = 65, N3 = 180,

and Ah = H/8), the symmetric microstrip cross-junctions

and T junctions (WI = Wz = W = 0.6 mm) under symmetric

excitations are studied. Here the side boundary is given the

same type of boundary treatment as for the end, since in

this case sideways flow becomes another major direction of

power flow.

I

I ‘z direcrlon

x

Fig. 13 Gaussian pulse propagation and reflection m the microstrip T
Junction: E, component just underneath the strip.
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Fig. 14. Frequency-dependent S parameters of the microstrip cross-

Junction. Solid: time-domain result, dash: Mehran, c, = 9.7, h = 0,635
mm, WI = Wz = 0.56 mm [14].

Figs. 12 and 13 show the time-domain field distributions

for the cross-junction and T junction. The Gaussian pulse

which travels into the cross-junction is seen to split four

ways after it hits the cross-junction. For the case of the T

junction, a small amount of surface wave is observed to

travel past the junction, as most of the energy is either

reflected backward or transmitted sideways.

Figs. 14 and 15 plot the calculated S parameters for the

cross- and T junctions (magnitudes only), together with the

results of Mehran [14] as comparison. These results are

calculated directly from the definition of each S parameter

using the transformed time-domain fields in a way similar
to the open-end case. The reference planes for the net-

works which represent the discontinuities are indicated in

Fig. 1.

The independent S parameters for the cross-junction are

Sll, S21, and S31. From Fig. 14, it is seen that these three S

parameters all acquire the value 0.5 at dc and very low
frequencies, indicating that the four branches of the cross-

junction each get an equal 1/4 share of the total field
energy; thus the U condition for the S matrix is well

satisfied, and no (detectable) radiation occurs at those

frequency ranges. The same is not true for higher fre-

quency ranges.
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Fig. 15. Frequency-dependent S parameters of the microstrip TJunc-

tion. Solid: time-domain result, dash: Mehran, c, = 9.7, h = 0,635 mm,

WI= W2 = 0.56 mm [14].

The independent S parameters Sll and S’zl for the T

junction under symmetric excitation are plotted in Fig. 15.

Again the U condition is checked to be satisfied in the very

low frequency range.

From Figs. 14 and 15, it is seen that the time-domain

results and the results of Mehran have very good agree-

ment at dc and the lower frequency range. The discrepan-

cies which occurred at very high frequencies are believed

to be partly due to the fact that the waveguide model

approach used in [14] is not able to take into account the

radiation and surface wave generation effects which hap-

pened at higher frequency, and partly due to the fact that

the time-domain results will not represent the exact domi-

nant mode parameters after the inflection frequency, which

is around 35 GHz for this configuration. The fact that the

T junction results have earlier and larger discrepancy fur-

ther confirmed this point, because here the surface wave

becomes another reason for the waveguide model to fail,

adding to the radiation loss.

C. Microstrip Step-in-Width and Gaps

Figs. 16 and 17 show the calculated time-domain fields

and S parameters for the microstrip step-in-width ( W1/H

= 1.0, W2/ WI = 2.0) using a mesh with size similar to that

of T and cross-junction calculations. The S parameters for

the step-in-width are defined as

~ = ~lref (f)

11 Vlinc(f)

J&am (f)

Ipo,(f )
’21=V~i~~(f)

{W

s = ‘2r.f (f)
22 V~i~~( f )

(22)

(23)

(24)

S12= S21 (25)

1.0

1

x

-0.5

%

I //’ ;,.~

1
,d-

Y
&o/’””’

Fig. 16. Gaussian puke propagation and reflection m the microstrip
step-in-width structure: l~z component just underneath the strip..
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Fig. 17. Frequency-dependent S parameters of the microstrip step-in-
width. Solid: time-domain result, dash: Koster and Jansen, c, =10 133],

where Zol( ~ ) and 202(j) are the characteristic impedances

of the microstrip lines connected to port 1 and 2 of the

step, respectively, ancl are calculated in the same way as

shown in [26].

The calculated frequency dependence of the S parame-

ters of the stemin-width is suite flat over a large frequency
L ,
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Fig. 18. Gaussian pulse propagation and reflection in the microstrip
gap: Ex component just underneath the strip.

range. It is in good agreement with the result of Koster

and Jansen [33].

Figs. 18 and 19 are the calculated time-domain fields

and S parameters for the microstrip gap discontinuity

(S/H= O.5). The dcblock characteristics of the gap are

exhibited in the S parameter results.

IV. CONCLUSION

It has been shown that the time-domain finite difference

approach is capable of calculating the dispersion character-

istics of the microstrip discontinuities over a large fre-

quency range. It is a very general method and can find

wide applications in modeling various microwave compo-

nents. Further investigations on different computer-memo-

ry-saving schemes will make this method more suitable

for CAD purposes.

ApPENDIX

To calculate the EY and E, components on the dielec-

tric–air interface, we start with the Maxwell equation

8E’ 1—=–v Xii
at ~,

(Al)

where i = 1, 2 denotes the dielectric constant in the sub-

strate and the air region, respectively. Taking the calcula-

tion of EY as an example, we have, from (Al),

dEY 1 i3HX dHz

-( 1dt ‘; -Z--F “
(A2)

Since EY, HX and 6’HX/dz are continuous across the

interface, it is very obvious that 6’H=/6’x is discontinuous

across the boundary; i.e., we can get from (A2) ‘

.05 ~
0.0 10.0 20.0 30.0 40.0 50.0 60.0

FREQUENCY (GHZ)

Fig. 19. Frequency-dependent ,S parameters of the microstrip gap.

Therefore on each side of the interface and at positions

very close to the boundary, we can write

dEY dHX dHZ

c’ dt – dz U

—. —— —
dx ~

(A4)

Approximate ( dHz/dx)l and ( dH=/dx)2 by

aHz

(-)

Hz(nZ)-H, (77z-l/2)

ax ~= Ax

2

aHz

()

H2(m+l/2)– Hz(m)
—e
aX ~ Ax

(A5)

2

where m is assumed to be the position of the interface, and

m + 1/2 and m – 1/2 denote the positions a half step

above and below the interface, respectively.

Substituting (A5) into (A4), we get

H,(m) = ‘Hz(m+ l/2)
61+62

C’2– cl aHx
+ ‘H, (m–l/2)+— —Ax/2. (A6)

E1+62 cl+ (z az

Substituting the H.(m) value of (A6) back into (A5),

substituting the resul{ing (A5) into the two expressions in

(A4), and adding the two together, we get

c1 + C2 8EY i7HX H=(m + 1/2) – Hz(m – 1/2)
— .——

2 at=aZ– Ax

aHx AHZ
.— _—

az Ax “
(A7)

Similarly, we get

Thus we can further discretize (A7) and (A8) to calculate

the tangential 1? components on the dielectric–air inter-

face.
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lt is straightforward t’o show that this boundary approxi-

mation is of first order in space and second order in time.
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